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We present the application of the general formula for solving a linear 
integral equation of the first kind, encountered in solving a number of 
problems of statistical theory of optimum systems [3 1, to the case when 
the kernel of the equation represents a correlation function of a random 
function and is related to white noise by linear differential equation. 
A case of an infinite observation interval is treated first and the 
results obtained are then applied to the case when the observation 
interval is finite. Finally on the basis of the author’s general formula, 
a solution for the nonstationary case given by Laning 112 1 is derived in 

a straightforward manner. From this solution there follow previously- 
known solutions of specific problems by Dolph and Woodbury [ll I, Zadeh 

and Ragazzini [ 7,8 I, and Semenov. In [ 3 ] it was shown that the 
known results by Wiener [ 6 1 and Booton [ 9 ] for the case of infinite ob- 
servation interval can be obtained from the author’s general formula as 
special cases. Consequently, the results of this article complete the 
proof that all the known methods of determining optimum linear systems 
may be very simply obtained through the application of one general method, 
that of canonic representations of random functions. 

1. Introduction. Ihe general problem of finding an (in the statis- 
tical sense) optimun dynamic system, consists in determining with the 

greatest possible accuracy the value of some random function at time s 

on the basis of observing some other random function during the time 
interval s - 7’6 t ( S. ‘Ibis problem is a special case of the general 
mathematical problem on optimum estimate of a random function W(s) by 

transforming another realized random function 2Xt 1 observed in a region 
T where its argument t varies. Here the arguments t and s may be any 
scalar or vector variables or may even be elements of arbitrary abstract 
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spaces. The following technical problems lead, in particular, to this 
problem: measurement and extrapolation of variable quantities, automatic 
tracking of moving objects, reception of radio signals in the presence 
of natural and artificial disturbances, reproduction of sound and images, 
design of guidance systems, machine control and industrial processes 
control systems, weather forecasting, etc. In solving such problems 
various probability criteria are used for the optimum, whose choice is 
determined by the specific character of any given problem. Methods of 
solving these problems make up the modern statistical theory of optimum 
systems. 

Of fundamental importance in all general methods of determining the 
optima operator, while using various probability criteria, is the prob- 
lem of finding the linear operator A which satisfies the equation of the 
form 

(1.1) 
where Kx(t, u) is the correlation function of some random function X(t) 
which represents disturbance (noises, measurement errors, etc) or the sum 
of the disturbance and the irregularly varying part of the random func- 
tion: f(s, u) is the known function; index t of operator A indicates that 
the operator operates on function Kx when the latter is taken to be a 
function of t with u held fixed. Equation (1.1) must be satisfied for all 
values of u of observation region T. 

Equation (1.1) was originated as an equation determining the optimum 
linear operator for the criterion of minimum mean-square error [: 1 1 . 
Andreev has shown that the same equation also governs the problem of de- 
termining of the optimum linear operator by the more general criterion 
of extremum of the given function of mathematical expectancy and error 
dispersion [ 5 1 (see also [ 1 I 1. A special case of equation (1.1) was ob- 
tained 1 12 1 while determining the optimum operator by the criterion of 
minimum mathematical expectancy of the given error function for the 
normally distributed disturbance, and also when solving various special 
problems in the theory of optimum systems in a number of other papers. 
A general method of determining the optimum operator for the case of 
normally distributed disturbances and using an arbitrary criterion of the 
byes-type has recently been developed. ‘lhis method also is based on 

solving equations of form (1.1) [ 4 I, 

Equation (1.1) has been solved for various special cases in a number 

of papers [6-12 1. In [21 a general solution of equation (1.1) is given 
in the form of an infinite series, and is obtained by the method of 
canonic expansions of random functions (see also [l 1 ). 'Ihis solution 
makes it possible in all cases (for any scalar or vector functions X(t ) 
and f(s, u) and for arbitrary scalar or vector variables t, s, u), to 
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find an approximate solution of equation (1.1) suitable for numerical 

computations. In particular, this solution makes it possible to determine 

optimum one-dimensional (one input and one output) and multidimensional 

(several inputs and outputs) automatic linear systems designed to re- 
produce signals in the presence of disturbances. In [ 3 1 a general solution 

of equation (1.1) is given in closed form, derived by the method of 

integral canonic representations of random functions. ‘lhe practical 
application of this solution is limited to those cases when it is possible 

to find integral canonic representations of random function X. From this 

general solution (31, in particular, there was obtained the formula for 
the weighting function (kernel) of the linear integral operator A satis- 

fying equation (1.11 when both t and s are continuously varying scalars 

(in special case time moments) and the observation region T is an infinite 
interval - 00 < t < s. In this case equation (1.11 is a linear integral 

equation of the first kind 
. 

I, 
& (t, n) g (s, q & = f (s, u> (--<u’<S) (1.2) 

where g(s, tl is the weighting function of the desired linear integral 

operator A. Ihe solution of equation (1.21 obtained in C 3 1 is of the 

form 

g (s, t) = 
’ w-(x, t)dX ’ s c 0) s f(s, u) w-(‘h, u)du 

--QD --QD 

(1.3) 

where ra-.(t, rl is the weighting function of the linear system which 

transforms random function X(t) into white noise V(t), and G(t) is the 
dispersion density of white noise V(t). A linear system with weighting 

function w- (t, rl is the inverse of a linear system with weighting 

function w( t, I 1 forming a given function X( t 1 from white noise V(t 1. 

In [ 3 1 it has been .shown that from the general formula (1.31 there 

follow as special cases previously-known formulas by Wiener (6) and 

Eooton (9). In this article we will show that from formula (1.3) there 

follow all the known closed-form solutions of equation (1.1) obtained in 

solving problems of determining optimum one-dimensional linear systems 

for the finite observation interval s - T ( t < S. This concludes the 

development of the general theory of solving equations of the form (1.11, 

based on a unique mathematical method - the method of canonic represent- 

ations of random functions. Thus the results of this article, together 

with the results of papers I l-4 1 , will permit us to state that the method 

of canonic representations of random functions is the foundation of the 

modern statistical theory of omptimum systems. 

2. Case when random function X is related to white noise 
through a linear differential equation and the observation 
interval is infinite. Let us consider a special case when random 
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function X(t) is related to white noise V(t) through a linear differ- 

ential equation 

Ft X (t) = Ht V(t) 
i 

F,= &$P, H,= 2 bkDk, LIE-g (2.1) 
k=o k=o 1 

whose coefficients, in general, may be arbitrary functions of time t, 

possessing all the derivatives necessary for further calculations and 

moreover, n > m (the case when n< m has no practical value, since the 

dispersion of random function X is infinite). Moreover, let us first con- 

sider a case when the observation interval is infinite, - =< t< s. 

Evidently, we can, without loss of generality, take dispersion density 

G(t) of white noise V as identically equal to unity, since the general 
case CT always be put into this form through the substitution V(t) = 
JET2 V,(t). lhn (1.3) will assume the form 

g(s, t) = \ w- (h, t) dh 5 t (s, u) w- (A, u) du (2.2) 
--QI -00 

In the case considered, weighting function w- is defined by the 

differential equation 

Hf w- (t, T) 2= Ft 6 (t - T) (2.3) 

Let us introduce a weighting function p(t, r ), corresponding to 

operator H. It satisfies the following differential equation 

Ht p (t, T) = 6 (t - T) 
'lhen we will obtain* 

w-(& t) = Gp (i, t) 

and (2.2) will assume the form 

(2.4) 

(2.5) 

I 

g:s, t) = F; 
s P (A, t) E (s, 1) 4 f(S, A) = \ w- (a, 4 f 6, 4 du (2.6) 

--Q) --Q) 

'Ihis formula may be represented in the form 
* 

g(s, t)= F:y (s, t), rl (s, t) = 
s P (h t) 5 (% 1) da (2.7) 
--oD 

Thus formula (2.2) is equivalent to the three formulas (2.61, (2.7). 

From these formulas in the given order functions e, q and g can be 

computed. 

Since n > m, the weighting function w defined by the differential 

l The asterisk denotes the corresponding conjugate differential 

operators- throughout, 
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equation (2.3) must contain S-functions and all its derivatives up to and 

including the order n -. m. Consequently, the function t, defined by (2.6), 

will contain a linear combination of function f and all its derivatives 

up to the order n -'m, inclusive. The remainder of the right-hand side of 

formula (2.6) becomes zero when X = - m. Thus formula (2.6) defines 

function 5‘ as a solution of the differential equation 

H*E(s, t) = F,f(s, t) (2.8) 

and this solution is a sum of a linear combination of function f and its 
first n - m derivatives, and some function which becomes zero for t = - m. 

'lhe formula (2.7) defines the function ~7 as the solution of the differ- 

ential equation 

Sq(z, t) = E(G 0 (2.9) 

and this solution becomes zero for t = s together with its first m - 1 

derivatives, i.e. it satisfies the end conditions 

“1 (s, s) = 1; (s, s) = . . . = qp+-1) (s, s) = 0 (2.10) 

Consequently, to determine the weighting function g satisfying equa- 

tion (1.2), one must find the solution of equation (2.8) (which is a sum 

of a linear combination of function f and its first n - m derivatives and 
a function which becomes zero for t = - = ) and solve equation (2.9) 

subject to the end-conditions (2.10). Weighting function g can then be 

determined from (2.7) by means of differentiation, multiplication, and 

addition. 

'lhe derivative of the a-th order of the function q, in general, will 

have a discontinuity of the first kind at t = s. ‘lherefore, since n > m, 

the function g defined by (2.7) in general will contain a linear combina- 

tion of B-function and its derivatives of the order n - m - 1 inclusive. 

This linear combination of S-functions can be separated from the rest of 

function g as follows 

T&--m-l 

g (S, t) = g, (S, q + 2 B, m (t - s) (2.11) 
r=o 

where g, is a function which has no b-functions. Coefficients B, in 

(2.11) are expressed through discontinuities of the derivatives of func- 

tion q of the order higher than m - 1 and values of the F-operator 

coefficients and their derivatives at t = s. ‘Ihus they can be expressed 

through the following formula 112 I 

n-r-1 h 

Bt= 2 2 (-l)h+r+1C~al;h+71:1(~)A1r"' (r=o,i,...,n--m--q(2.12) 
h=m l=m 
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where discontinuities of the derivatives of function q are defined by 

Ai +I) .ZE - q{‘) (S, S) (1 = m, . . . , n - 1) (2.13) 

In a special case when operator H is unity, H = 1, formulas (2.7), 

(2.3), (2.9), and (2.11) give the solution of equation (1.2) explicitly 

n-1 

g (s, t) = F; F, f (s, t) + z: B, W) (t - s) (2.14) 
r=o 

3. Case when random function X(t) is related to white noise 
through a linear differential equation and the observation 
interval is finite. When the observation interval is finite, s - T ( 
t < s, and there is a linear integral operator A, equation (1.1) is a 

linear integral equation of the first kind 

. 

s 
K, (t, u> b” (s, t) dt = f (s, U) (s -T <u <s) (3.1) 

8-T 

Formula (1.3) and the whole method described in the preceding section 

are not directly applicable to equation (3.1). However, equation (3.1) 

can be transformed into (1.2) by extending function f into the region 

u<s- T in such a fashion that function g (defined by (1.2) ) becomes 

zero for all t < s - T. Equations (1.2) and (3.1) will then be equivalent 

in the interval s - T 4 u 4 s and their solutions will be identical. On 

the basis of (2.7) the condition 

g (s, t) = 0 for t<s-T (3.2) 

is identical to the condition 

F; q (s, t) = 0 for t<s--T (3.3) 

Consequently, the problem in this case is to solve (3.3), compute 

function [ for t < s - T using (2.9), and to determine function f for 

t< s-Llrby solving equation (2.8). Function g will then be determined 

by the method of the preceding section. 

l-et+ ***, 8, be some linearly independent solutions of equation 

(3.3). Its general solution will then be expressed as follows 

T(S, t> = &q,(t) (t<s-T) (3.4) 
t-=1 

Substituting this into (2.9) we obtain 

where 

E(s, t) = 2 G&(t) (t<s-2’) 
r=1 

E,(l) = H: or (t) (r=l,..., n; t<s-T) 

(3.5) 

(3.6) 
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Substituting (3.5) into (2.6) with X = r; multiplying it by weighting 

function ~(t, r), which serves to transform white noise into random func- 

tion X(t); integrating the result with respect to r and between the limits 

-mandt; and taking into consideration the known relation between 

weighting functions of mutually inverse systems we obtain 

f(~, t) = i c,j,(t), 
t=1 

fr(t) = \ w(t, T);~(T) dz 
--oD 

t<s-T 
r=i,...,n 

; (3.7) 

Fquation (3.7) defines function f for t < s - T, with an accuracy with- 

in n arbitrary constants cr. To determine conditions from which these 

constants can be found, let us note that function g (defined by (2.7) ) 

cannot have derivatives of the a-function of an order higher than 

n-m- l. Otherwise the transformation result of the random function 

under observation (transformed by means of the integral operator A which 

has weighting function g) will have a component in the form of white 

noise and its dispersion will be infinite. To satisfy this condition it 

is necessary and sufficient for function 7 to be continuous at t = s - T, 
together with its first m - 1 derivatives. For this, in turn, as is seen 

from equation (2.9), it is necessary and sufficient for function [ to be 

continuous and have a discontinuity of the first kind at t = s - T. l?ut 
function 6 is defined by (2.6) and, as was shown in the preceding section, 

it contains a linear combination of function f and its first n - m deri- 

vatives. Therefore, function t will satisfy this condition only if func- 

tion f and its derivatives of the order n - m - 1 inclusive are 

continuous at t = s - T. This condition will give n - m equations relat- 
ing values of cr. 'lhe other m equations will be obtained from the condi- 

tion of coincidence of function '1 (defined by (2.7) ) and the solution 
(3.4) of equation (3.3) for t < s - T. We will obtain these equations 

later, leaving values of cs undetermined at this point. Dividing the 

interval of integration of.equation (2.6) into two parts, - 00 < u < s - T 

and s - T< u( s, and utilizing expression (3.7) of function f for 

t<s- T we obtain 

((8, q= i G&(l) + 3 w--(t, u)J(s, U) du (s -- T G t <s) (3.8) 

where 
I.=1 S-Y 

8-T 

h(t) = \ w- (t, u) Ir (u) du (r==l,..., n; s--T<:~s) (3.9j 
-co 

To determine function T) for s - T< t < s from (2.71, it is first 

necessary to find weighting function p. For this, let us treat it as a 

solution of the equation 

H&h, t) = 6(h - 1) (3.10) 
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2.4). Qmoting through yI, . . . . y, the solutions 

of the equation 

rr;y=o (3.11) 

which satisfy the initial conditions 

yjkh-l) (s - T) = s/(,, (k, h= 1, . . . , m) (3.12) 

function p can be represented by 

(3.13) 

Here W[#J,, .*., &I denotes the Wronskiau of the functions &,(A), . . 

0’) &Cl ). 

Sbstituting the expression of weighting function p (3.13) and the 

expression of function [ (3.R) into (2.7) we obtain 

where 

q(s, t) = 2 y*(tf[ =r: crz,,(l)+ui(t)] (S-TII’tts) (3.14) 
I_: 1 t- I 

(3.15) 

W-(A, U)J(S, U)dU (I== 1,. . . , m) (3.16) 

Dividing the integration interval into two parts and expressing fuuc- 

tion t for t < s - T through (3.5), for t < s - T we have 

1 (S, t> -L 2 y, (q [ 3 G Zlr (s --)+B1(S-7’)]+ il’r9r(t (3.17) 
l=l r-1 r-1 

where 
S-7 

It is obvious that I$ (t) is the solution of equation 

(r = 1, . . . , n) (3.19) 
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and it becomes zero, together with its first m - 1 derivatives, for t = 
_ s - T. Consequently, 

+r (0 = Tr (1) - lg qy (S-T) Y, (4 (r = 1, . . . , n) (3.20) 

Substituting this expression into (3.17) we obtain 

q(s, t) = i Yl@,{i G[%(S - T) - $'-"(S- T)l + 
l=l r-1 

+ 4 (s - T,) + i G qr Cl) (3.21) 
r=1 

Comparing this with (3.4) we see that function '1 as defined for 

t < s - T by (3.21) coincides with function q as previously defined as a 

solution of equation (3.3) only when the following conditions are satisfied 

i: C,[&(S - T)--+-')(s - T)] = - ?.Q (S-T) t (l= I, . . . , m) (3.22) 
r-1 

From the continuity condition of function f and its first n - m - 1 

derivatives at t = s - T, the remaining equations for determining cs can 

be written as 

i: C’p (s - 1’) = p (s, s - T) (k=O, I,. . .) n--m-l) (3.23) 
r=1 

Gee the values of cy have been established through solving a system 

of linear algebraic equations (3.22) and (3.231, formulas (3.14) and 

(2.7) will completely define the solution of equation (3.1). 

In the general case the above method gives function '1 whose m-th 

derivative possesses discontinuities of the first kind at t = s - T and 

t = s. Therefore, weighting function g (defined by (2.7) ) will in 

general contain a linear combination of the a-function and its derivatives 

of the n - m - 1 order, inclusive, corresponding to points t = s - T and 

t = s. Separating this linear combination of 6-functions from the rest 

of the g-function, we obtain 

n--m -1 

g cs, l> = gl (S, t) + 2 [A, W) (t - s + T) + B, W1 (t - s)] (3.24) 
t-o 

where g, is a function having no a-functions, the coefficients Br are 

determined from (2.12) and (2.13), and the coefficients A, are determined 

from the similar formulas 
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n--r--l h 

A, = 2 2 (- l)h+r+lC; a:,$$ (s - I’)A, q(I) (3.25) 
h=m l=m 

(r=O, 1,. . . ) n--m-l) 

A0 Y(O = q/O (s, s - T + 0) - +qj[) (s, s - T - Oj (L= rn, . . . , n = I) (3.26) 

‘Ihis method of solving integral equation (3.1) differs somewhat from 
the Laning method, although it naturally leads to the same results. The 

derivation of the solution of equation (3.1) on the basis of the general 

formula (2.2) obtained by the method of integral canonic representations 

of random functions is considerably simpler than Laning’s formal deriva- 

tion. ‘l’his method differs from Laning’s, for example, in that it requires 

solution of n linear algebraic equations with n unknown con&ants, while 

the Laning method necessitates solution of a system of n + m linear 

algebraic equations with n + m unknown constants. ‘These differences are 

not fundamental, of course. They stem from the fact that in the Laning 

method the unknown functions 5 and 7 for t> s - 7’ are determined by 

solving equations (2.8) and (2.9), while this method is based on the 

application of formulas (2.6) and (2.7), leading directly to the desired 
particular solutions of equations (2.8) and (2.9). ‘l%is reduces the 

number of undetermined values and of equations required to determine them. 

In a special case when operator H is unity, H = 1, this method gives 

the known solution of equation (3.1) obtained by tblph and Woodbury [ll 1 
n-1 

g (s, t) = F; Ft f(s, t) + 2 [A, W) (t - s + T) + B, iYr) (t - s)] (3.27) 
r=o 

In a special case, when coefficients ak and b, determining the linear 

differential operators F and H in (2.1) are constant, the random function 

X defined by differential equation (2.1) is a stationary random function 
with fractional rational spectral density. Also, all differential equa- 

tions (2.81, (2.91, (3.3), and (3.11) will be linear differential equations 

with constant coefficients, and consequently can be solved by known 
standard methods. If, moreover, function f(s, t) is a polynomial in t, 
then this method gives the known solution of the problem by Zadeh and 

Ragazzini (7,8) and by V.M. Semenov. 

This method, as well as formulas (1.3) and (2.2), is easily general- 
ized to include the case when random process X(t) defined by equation 

(2.1) is not infinite but starts at some finite instant to < s - T. To 
obtain the solution of equation (3.1) for this case, - 00 should be re- 

placed by t0 in all the formulas in this article. Incidentally, this gives 
an interesting generalization of the problem, by Zadeh and Ragazzini, for 

nonstationary random functions related to white noise through linear 
differential equations with constant coefficients. 
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This method may be generalized to include the case of a vector random 

function X, whose components are expressed through noncorrelated white 

noises by a system of linear differential equations. To obtain this 

generalization, it is sufficient to utilize the general formula for 

weighting functions, satisfying the system of integral equations of the 

first kind into &ich equation (1.1) transforms in this case (such a 

formula was obtained in [3 I by the method of integral canonic represent- 

ations of random functions) and to apply to this formula the considera- 

tions by which this method was derived from (2.2). 

Example 1. Find solution of equation (3.1) when T = s and operators F 

and H in equation (2.1) are expressed as 

F = a~ (t) D + ao (t), II = 1 (3.28) 

In this case the solution of equation (3.1) is determined from (3.27) 

for n = 1 and T= s. To find coefficients A0 and B. of the 6-functions it 

is necessary to determine the function and its discontinuities at the 

points t = 0 and t = s. For this we shall need the weighting function 

tp( t, 71, corresponding to (2.1). It is easy to see that in this case it 

is determined by 

q1 (t) 
w (4 7, = Ul(l) q1 (T) ’ s&)=ex+$+) (t> 7) (3.29) 

Equation (3.3) for this case has the form 

d 
-~hml+~owl== (3 30) 

This equation is of the first order, and consequently in (3.4). (3.5). 

and (3.7) n = 1. Solving (3.30) and applying (3.6) we find 

51 (t) = 111(t) = ‘al @)lql (q 

Substituting (3.29) and (3.31) into (3.7), we obtain 

(3.31) 

(3.32) 

Consequently. formulas (3.4) and (3.7) defining functions 17 and f for 
t< s- ?‘= 0 will in this case have the form 

‘1 (9, t) = c’ 
a1 (1) 91(t) ’ f (s, t) = Cl Q2 (G (t <f-4 

To determine the unknown constant c1 we have one equation (3.23) which 
constitutes the continuity condition of the function f at t = 0. From 

this equation we find 
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f 0, 0) 
Q=Qr (3.34) 

nor t > 0 the function 7 is defined by equations (2.8) and (2.9) which 

give 

? (s, t) = 5 (s, t) = P, f (s, r) = at (L) r; (s* t).+ a0 (t) f (3, t) (t > 0) (3.35) 

Using (3.26). (3.33). (3.34). and (3.35) and taking into consideration 

(3.29) and (3.32) we obtain the following expression for discontinuity of 

function W at t = 0 

(3.36) 

Similarly, using (2.13), (3.35), and (3.29) we find the discontinuity 

of function q at t = s 

4 -q = - al (s) fl (s, s) - ao (4 f (se 4 - - =I (s) II 
q; (4 

f; (s> 4 - Al f (s, 4 1 (3.37) 

Once the discontinuities of function ~7 are found. the coefficients of 

6-functions are determined from (3.25) and (2.14) 

At,=--al (0) ho?=-o;(O) j; (s, 0)-s 
[ 

f (s, 0) 
2 1 

(3.38) 

B. = -al (s) A1 q = a; (s) f; (s, s) - g f (6 4 3 

Substituting expressions for A,, and B. into (3.27) and taking (3.29) 

into consideration. we find the desired solution of equation (3.1) 
(3.3 ,) 

g(s, t) = - a; (t) r; (s, t) - 2a1 (t) +) r; (6 t) +[g(t) -a&) 01(t) -a0 (t) a; (Qlf (s, 1) - 

- 0; (0) r; (s, 0) - [ g f (St 0) 
0 1 8 (t) + 0; (4 r; (s, 4 -& [ 

Q’ (4 
f (s, s) . I 6 (t - S)J 

This formula was first obtained by a different method by Dolph and 

Woodbury [ 11 1 . 

Example 2. Find solution of equation (3.1) when T = s and operators 

F and H of (2.1) and function f are as follows 

F = Da + 2aD + ba, H = keLL’ (D + b), f (5 1) = h + kzt (3.40) 

where a, b, k, p, are constants and b > a > 0. 

This problem is encountered in optimizing a linear system designed to 
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reproduce linear time functions with random coefficients and using 

minimum mean-square error as a criterion [ 1 1. 

In this case equation (3.3) has the form 

7“ - 2aq’ + b2q = 0 

Two of its linearly independent solutions are 

?1 (t) = ,(a++) t, .#J2 (q = p-i%) 1 (a0 = I/b” - a*) 

Substituting (3.42) into (3.6). we find 

51(f) = k (b - a1 - iwO) &fW t, c2 (t) = k (b - al + ho) e(al--iwJ) t 

where for the sake of brevity, 

al=a+[* 
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(3.41) 

(3.42) 

(3.43) 

To determine fi and f2 from (3.7). we first find weighting function 
which in this case is determined by 

wf’(t, T) + 2awt’(t, T) + b2w(t, T) = kelrt [a’(~ - T) +b8(t - T)] (3.44) 

Solving this equation, we obtain (for t > f) 

~(t, v) =2& [(b- a1 + ia,,) e-(a-io3f+(a~-io*)* - 

- (b - al - iwO) e -(a+W~+(al+icJ.)r I (3.45) 

Substituting (3.43) and (3.45) into (3.7). we find functions f, and f, 

(3.46) 

where 

To determine functions 5, and t3 for t > 0, we must first find weight- 
ing function W-. Its equation (2.3) for this case has the form 

I& 
I 
F + bw-(t, T) ] = ~(t -T) + 2aB’(t - 7) + b%(t- T) (3.47) 

Solving it, we obtain 

w-(t, v)= g [3’(t - 7) + (2a -b + p) 8(t - T)] + 

e-LIT 

+k 
- (2b(b - a) - p(2b - 2a -p)] e-*(*-‘) l(t - 7) (3.48) 

Substituting (3.46) and (3.48) into (3.91, we find eXPreSSiOn for 
functions cl and c2 for t > 0 
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(3.49) 

C;,(t) = b(t) = --bvewM, 

For further computations we must find solutions of equations (3.11) 
satisfying conditions (3.12). Equation (3.11) for this case has the form 

y’ - (6 - r)y = 0 (3.50) 

The solution of this equation satisfying the initial condition (3.12) 
has the form 

yl (t) = Jbmwjf (3.51) 

Weighting function p, defined by (2.4) will for this case be 

*($, 7j = $ ,--bt ,(b--rr)r (3.52) 

Comparing this with (3.13), we find 

PI(T) = + e--b+ (3.53) 

Substituting (3.49) and (3.53) into (3.15). we find functions til 

and z12 

w(t) = ZIP(~) = - & (e 
-2bi _ e-2bs 

1 (3.54) 

Substituting (3.48). (3.53) and (3.40) into (3.16) we find function uI 

ul(t) = [f&b2 f fi&~ + h4] [e-(b+p)f - e--(b+uls] - & [ (b - &Xl- hi] (ewaf - e-2:i)s, 
. 

where 

The formula (3.14), which determined function ‘I for t > 0 for this 
case, has the form 

Yj (s, t) = e@-)* [clzIl(t) + WI&) + udt)l (3.57) 

Equations (3.22) and (3.23). defining ci and c2 have the form 

cl[zll(o)- I] + ca 1212(O) - 11 = -w(O), ClfdO) + 4fO) = Al (3.58) 

Once these equations are solved and the values of c1 and c2 are sub- 
stituted into (3.57). funotion W will be completely defined. All that 
remains, to determine the desired weighting function g(r, t). is to find 
the coefficients of S-functions in (3.24). Using (2.12). (2.13). (3.25). 
(3.26) and (3.42), we find 
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A0 = Aor,’ = q’(s, 0) - c&z + io,) - c*(n - ioo), u, = Al?; = - qI’(s,s) (3.59j 

On the basis of (2.7). (3.24) and (3.59). the weighting function of 
the optimum linear system will be expressed through the formula 

g(S, f) = 4t’(S,f) - h,’ (s, t) + b2q (s, t) + [q,‘(s, 0) - cl(a + io0) - c2(a - iwo)] 8(f) - 
- q*‘(s, s)8(1 -s) (3.60) 
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